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Two different multidimensional pulsed field gradient sequences
are compared which have the purpose of correlating spin displace-
ments in different time intervals with each other. The simplest pos-
sible sequence, three-pulse SERPENT, measures displacements in
two interleaved time intervals, while in VEXSY, consisting of two in-
dependent pairs of gradient pulses separated by a mixing time, dis-
placements during the two encoding intervals are compared to each
other. The formalism for both sequences is discussed in q space and
in displacement space and common features as well as differences
between the two types of experiments are highlighted, employing
the particular case of the concurrent VEXSY scheme which allows
treatment according to both formalisms. C© 2001 Academic Press
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INTRODUCTION

In 1993 Callaghan and Manz proposed a new type of pu
gradient spin-echo experiment in which two independent p
of gradient pulses were used to encode for nuclear spin
placement over two separated, but well-defined, time inter
(1). This two-dimensional NMR spectroscopy method, kno
as VEXSY (Velocity EXchange SpectroscopY), was in the fo
of a classical NMR exchange experiment, which is used to
correlations between features in the frequency spectrum b
identification of cross-signals in a two-dimensional density r
resentationS( f1, f2) (2–4). In VEXSY, the displacements (o
velocities) for each molecule in the macroscopic ensemble
compared at two different times. The domains equivalent tf1

and f2 in classical spectroscopy correspond to the displacem
R1 andR2 over two identical encoding intervals, which are the
selves separated by a further time delay,τm, the equivalent of
the “mixing” time in the conventional exchange experiment. T
conjugate “preparation” and “detection” domains correspon
the q space of the pulsed gradient spin-echo (PGSE) me
(5, 6). The PGSE gradient pulse pairs are stepped so as to p
encode the spins for molecular translational motion. Both p
1 To whom correspondence should be addressed at Lehrstuhl f¨ur Makro-
molekulare Chemie, ITMC, RWTH Aachen, Worringerweg 1, D-52074 Aache
Germany. Fax: +49-241-8888-185. E-mail: sstapf@mc.rwth-aachen.de.
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of field gradient pulses independently define a value ofq. They
are usually applied in the same spatial direction so that a
isochromat corresponding to a set of molecules traveling at
stant velocity will have identicalR1 andR2 displacements, thu
contributing to points on the diagonal in (R1,R2) space. By con-
trast, a migration of spins from one region of the displacem
spectrum to another over the timeτm will lead to off-diagonal
contributions. In this manner the molecular velocities may
correlated. Application of VEXSY, mainly to fluid flow an
particle motion problems, has seen an increasing literatur
recent years and the interpretation of such correlations has
discussed by means of coordinate transformations (7–9) and
suitable 1D-experiments (10–15).

In 1999 an apparently different pulsed gradient spin-echo
periment was proposed by Stapfet al. (16), in which an ar-
bitrary number of sequential gradient pulses is applied to
spin ensemble, each with an arbitrary amplitude, but with
requirement that the time integral of the gradient wavefor
over the whole experiment be zero, which is the condition
quired for echo formation. (Note that the additional influen
of background gradients will be neglected throughout this
per.) The encoding of position, starting with the first gradi
pulse, is thus followed by a repeated labeling of the partic
at the times of each successive gradient pulse so that the s
tics of motion become encoded into the echo signal acqu
after completion of the sequence. In its simplest realization,
three successive gradient pulses, the echo constraint deter
that two gradient pulses may be independently varied, thus
plying a two-dimensional encoding space. This experiment
termed SERPENT for SEquential Rephasing by Pulsed field
dients EncodingN Time intervals (16, 17). Both VEXSY and
SERPENT belong to a family of PFG sequences which empl
multiple encoding of spin position but retain only displacem
information due to the fact that the echo condition is fulfilled
the end of the sequence. Both experiments apparently me
joint probabilities for displacementsR1 andR2 over two differ-
ent time intervals. We shall show here that in fact the three-p
SERPENT and the VEXSY experiments contain precisely
same information, albeit with ostensibly different coordinat
The interpretation of this information, however, depends on
2
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FIG. 1. (a) Spin-echo pulse sequence to encode displacements during two identical time intervals,1 (VEXSY). Both gradient pairs of wave vectorsk1 = −k2

andk3 = −k4 are stepped independently of each other. The mixing timeτm is measured between the second and the third gradient pulse. (b) Spin-echo
sequence to encode displacements during two overlapping time intervals,11 and12 (SERPENT). The gradients of wave vectorsk2 andk3 are stepped independentl
of each other andk1 is computed subject to the condition that the sum of the effective gradients is zero. (c) VEXSY spin-echo pulse sequence according

vanishing mixing time. The second and third gradient pulses can be concatenated into a single pulse. Below each sequence with RF pulses is shown the effective
gradient equivalent where each 180◦ RF pulse is replaced by an inversion of the sign of the gradient wave vector.
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choice of encoding times, as well as the wave vectors with
spect to which Fourier transformation is performed, and allo
focusing on either an integral or a differential aspect of fl
motion.

The respective pulse sequences for VEXSY and SERPE
are compared in Figs. 1a and 1b. Figure 1c presents a con
nated version of VEXSY which we shall show is essentia
equivalent to SERPENT. In each figure we show first a sp
echo version using RF pulses, and then, below, the effec
gradient equivalent (in which 180◦ RF pulses have the effect o
inverting the sign of the prior gradient pulses). For convenie
we employ the usual definitionk = (2π )−1 γgδ wheregδ is the
area under the gradient pulse.

We first analyze the respective pulse sequences using th
tablished language of propagators, making clear which pro
bility densities each method is able to measure. By examp
a special case which can be described by either terminol

we compare the salient features of both sequences with e
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other. We conclude by commenting on the applicability of bo
methods depending on the main interest of the experime
problem.

THE PROPAGATOR FORMALISM

The propagator analysis for each pulse sequence is illustr
with the help of Fig. 1 as follows: In the VEXSY experimen
(Fig. 1a), the four gradient pulses with wave vectorsk1,k2,k3,k4

are applied in pairs, each of which meets the echo condition; t
k1+ k2= 0 andk3+ k4= 0. The effective gradient pulses alon
with their time separations are then given by (−k1)–1–(k1)–
τm–(−k3)–1–(k3). For an oppositely directed pair of pulses,k i

and−k i , qi = (k i − (−k i ))/2 or, in other wordsqi = k i . The
pairs (−k1)–1–(k1) and (−k3)–1–(k3) define scattering wave
vectorsq1 andq3, respectively. We now formulate the expressi
for the echo attenuation in terms of the wave vectors,k, and the

achposition vectors,r . From
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E(k1, k2, k3, k4) =
∫∫∫∫

ρ(r1) exp(−i 2πk1r1)P(r1 | r2,1)

× exp(−i 2πk2r2)P(r2 | r3, τm)

× exp(−i 2πk3r3)P(r3 | r4,1)

× exp(−i 2πk4r4) dr1 dr2 dr3 dr4 [1]

we then obtain the echo amplitude

E(k1, k3) =
∫∫∫∫

ρ(r1) exp(−i 2πk1r1)P(r1 | r2,1)

× exp(i 2πk1r2)P(r2 | r3, τm) exp(−i 2πk3r3)

×P(r3 | r4,1) exp(i 2πk3r4)dr1dr2dr3dr4, [2]

whereρ(r1) is the initial spin density distribution,rn is the nu-
clear spin position at the time of thenth gradient pulse, and the
P(rn | rm, t) are conditional probabilities for a particle initially
at rn to move torm over timet . The underlying assumption is
that the duration of the gradient pulsesδ is short (δ ¿ 1), and
that motions duringδ can be neglected.

The equation above is expressed in a four-dimensional
ordinate system, (r1, r2, r3, r4) which denotes positions at th
timest1, t2, t3, t4 when the gradient pulses are applied. Rewr
ing the equation in terms of a new set of independent variab
defined by

r1, R1 = r2− r1, R2 = r3− r2, R3 = r4− r3, [3]

where theR vectors represent successive displacements, we
fine for equal magnitudes of the gradient pulses in the first pu
pair (q1) as well as in the second pulse pair (q3)

E(q1, q3) =
∫∫∫∫

ρ(r1)P(r1 | r1+ R1,1)P(r1+ R1 | r1

+R1+ R2, τm)P(r1+ R1+ R2 | r1+ R1+ R2

+R3,1) dr1 dR2 exp{i 2π (q1R1+ q3R3)}
× dR1 dR3

:=
∫∫

P̄(R1,1)PV(R1,1 |R3,1; τm)

× exp{i 2π (q1R1+ q3R3)} dR1 dR3 [4]

whereP̄(R1,1) is the average propagator which describes
probability that a particle displaces byR1 over time1 indepen-
dent of the starting position (6, 18) whilePV(R1, 1 |R3, 1; τm)
is the conditional probability that, if a displacement byR1 oc-
curs during the first interval1, then a displacementR3 will
occur during the third time interval of equal duration to th
first, delayed by a mixing timeτm. This particular nomenclature
has been chosen to emphasize thatPV describes the conditiona
probability betweendisplacementsin the VEXSY case, hence

the subscriptV , as compared toP(rn|rm, t) which relatesposi-
ET AL.
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tions to each other. Note that in Eq. [4] one integrates not on
over the starting positionr1 but also over the displacementR2

accumulated duringτm between the encoding gradient pairs, s
that information aboutR2 is effectively averaged out.

Normally the gradient pulses are applied along a single
rection (thez axis) and the data collected in two dimension
(q1,q3). Then, inverse Fourier transformation with respect
(q1,q3) returns the two-dimensional Fourier spectrum

S(Z1, Z3) = P̄(Z1,1)PV(Z1, 1 | Z3, 1; τm). [5]

In the special case of a velocity distribution where spins a
not allowed to change their individual velocity, such as lamin
flow in the absence of self-diffusion,PV(Z1, 1 | Z3, 1; τm)
is the Dirac delta functionδ(Z1− Z3) and the two-dimensional
spectrum is diagonal,

S(Z1, Z3) = P̄(Z1,1) δ(Z1− Z3). [6]

SERPENT (FIG. 1b)

In analogy to the notation of Stapfet al. (16), the effective
gradient pulses along with their time separations are (−k1)–11–
(−k2)–(12 − 11)–(k3), where−k1 − k2 + k3 = 0. The echo
amplitude is given by

E(k1, k2, k3) =
∫∫∫

ρ(r1) exp(−i 2πk1r1)P(r1 | r2,11)

× exp(−i 2πk2r2)P(r2 | r3,12−11)

× exp(i 2πk3r3) dr1 dr2 dr3. [7]

Rewriting in terms of a new set of independent variables defin
by displacementsR1 andR′2 from the initial positionr1

r1, R1 = r2− r1, R′2 = r3− r1, [8]

one obtains

E(k2, k3) =
∫∫∫

ρ(r1)P(r1 | r1+ R1,11)P(r1+ R1 | r1

+R′2,12−11) dr1 exp(i 2πk2R1)

× exp(i 2πk3R′2) dR1 dR′2 [9]

and

E(q2, q3) :=
∫∫

P̄(R1,11)PS(R1,11 | R′2, 12)

× exp{i 2π (q2R1+ q3R′2)} dR1 dR′2,

where for convenience we defineq2= k2, q3= k3. PS(R1,

11 |R′2,12) now describes the conditional probability that,
a displacement byR1 occurs during the first interval11, then

a displacementR′2 will occur during the total time interval12
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which incorporates11. Note that this representation is diffe
ent from the function introduced for the VEXSY experime
PV(R1,1 | R3, 1; τm), but is a consequence of the way t
SERPENT experiment and the subsequent Fourier transfo
tion are performed as will be shown in the under Compari
later in this paper.

Again, the gradient pulses are frequently applied along a
gle direction (thez axis) and the data collected in two dimen
sions, (q2, q3), although it is entirely possible for them to be
different directions. Then, inverse Fourier transformation w
respect to (q2,q3) returns the two-dimensional Fourier spectru

S(Z1, Z′2) = P̄(Z1,11) PS(Z1,11 | Z′2,12). [10]

S(Z1, Z′2) is precisely the joint probabilityW(Z1,11; Z′2,12)
discussed by Stapfet al. (16). Note that SERPENT produces
spectrum in which the displacements,Z1, Z′2, are plotted over
two time intervals different from those of the VEXSY expe
ment. The second of these displacements incorporates the
Thus in the event of a velocity distribution as discussed in Eq.
SERPENT will not return a diagonal two-dimensional spectr
but one which is inclined to the longer interval axis.

CONCURRENT VEXSY (FIG. 1c)

We now consider the VEXSY sequence in which the m
ing time is set to zero, as shown in Fig. 1c. Now the effect
gradient pulses along with their time separations are (−k1)–1–
(k1) (−k2)–1–(k2). The adjacent pair (k1)(−k2) can be concate
nated to a single pulsek′1 wherek′1= k1− k2. This gives us the
equivalent of the three-pulse SERPENT experiment in wh
the SERPENT triad (k1, k2, k3) is now (−k1, k′1, k2) and, as
required, sums to zero.

The normalized echo amplitude is given by

E(k1, k′1, k2) =
∫∫∫

ρ(r1) exp(−i 2πk1r1)P(r1 | r2,1)

× exp(i 2πk′1r2)P(r2 | r3,1) exp(i 2πk2r3)

× dr1 dr2 dr3. [11]

One can now rewrite Eq. [11] following the VEXSY term
nology, in terms of a new set of independent variables defi
by successive displacementsR1 andR2 from the initial position
r1,

r1, R1 = r2− r1, R2 = r3− r2, [12]

and obtains

E(k1, k2) =
∫∫∫

ρ(r1)P(r1 | r1+ R1,1)P(r1+ R1 | r1

+R1+ R2,1) dr1 exp(i 2πk1R1)
× exp(i 2πk2R2) dR1 dR2, [13]
F VELOCITY EXCHANGE 165
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E(q1, q2) :=
∫∫

P̄(R1,1)PV(R1,1 | R2,1; 0)

× exp{i 2π (q1R1+ q2R2)} dR1 dR2,

whereq1 = k1, q2 = k2.
For gradient pulses which are applied along a single dire

tion (thez axis) and with the data collected in two dimensions
(q1,q2), inverse Fourier transformation with respect to (q1,q2)
returns the two-dimensional Fourier spectrum

S(Z1, Z2) = P̄(Z1,1)PV(Z1,1| Z2,1; 0). [14]

Alternatively, one can assume the SERPENT terminology a
rewrite in terms of a new set of independent variables defin
by displacementsR1 andR′2 from the initial positionr1

r1, R1 = r2− r1, R′2 = r3− r1, [15]

in which case one obtains

E(k ′1, k2) =
∫∫∫

ρ(r1)P(r1 | r1+ R1,11)P(r1+ R1 | r1

+R′2, 12−11) dr1 exp(i 2πk′1R1)

× exp(i 2πk2R′2) dR1 dR′2 [16]

E(q′1, q2) :=
∫∫

P̄(R1,11)PS(R1,11 | R′2, 12)

× exp{i 2π (q′1R1+ q2R′2)} dR1 dR′2,

whereq′1 = k′1, q2 = k2. Inverse Fourier transformation with
respect to (q′1,q2) now returns the two-dimensional Fourier spe
trum

S(Z1, Z′2) = P̄(Z1,11)PS(Z1,11 | Z′2,12). [17]

In this special case, Eqs. [14] and [17] are two complement
representations of the same physical situation with11 = 1 and
12 = 21, whereZ′2 = Z1+ Z2.

COMPARISON OF VEXSY AND SERPENT

As has been described in the above paragraph, the t
dimensional probability density of displacements, which is o
tained from 2D-Fourier transformation of theq space data, can
be written as the product of the average propagator in the fi
time interval and a conditional probability function which pos
sesses a different interpretation for each of the experiments
to the nature of howq space is sampled (see Eqs. [5] and [10
VEXSY is characterized by two truly independent wave vecto
q1 andq3, and Fourier transformation with respect toq1 andq3

leads to a plot of the two displacements which are defined
these wave vectors, namelyR1 andR3. From Eq. [5] it can be

seen that the conditional probabilityPV(Z1,1 | Z3, 1; τm),
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itself being a two-dimensional function, is obtained from d
viding the 2D-probability densityS(Z1, Z3) by the propagator
P̄(Z1,1),

PV(Z1,1 | Z3, 1; τm) = S(Z1, Z3)/P̄(Z1,1), [18]

where the propagator itself is available via

P̄(Z1,1) =
∫

S(Z1, Z3) d Z3. [19]

Examples for the interpretation ofPV(Z1,1 | Z3, 1; τm)
have been presented in (19). In SERPENT, Fourier transforma
tion is performed with respect toq2 andq3 which render the cor-
responding displacements from the beginning of the seque
up to the application of the second and the third gradient pu
respectively. The division can again be applied (see Eq. [1
but the conditional probabilityPS(R1,11 | R′2,12) now relates
displacements in interleaved time intervals (16).

It is quite obvious that under the conditions shown in Fig.
both treatments should lead to equivalent results, the only di
ence being that VEXSY is performed by independent variat
of the first and third gradient pulses, SERPENT by variat
of the second and third gradient pulses. The formal equ
lence of Eqs. [14] and [17] can be proved by reordering
SERPENT data inq space—as the conditionk1+ k2+ k3 = 0
from the general case must be met, each point in (q2,q3) space
can be transformed into a point in (q1,q3) space—and subse
quent Fourier transformation with respect to the new variab
The equivalent operation in displacement space is to com
S(Z1, Z2) = S(Z1, Z′2− Z1) from each point in (Z1, Z′2) space.
Then Eq. [17] transforms into

S(Z1, Z2) = P̄(Z1,11)PV(Z1,11 | Z′2− Z1,12−11; 0)

= P̄(Z1,11)PV(Z1,11 | Z2, 12−11; 0), [20]

which is identical to Eq. [14] because11 = 1 and12 = 21.

INTERPRETATION OF INTEGRAL AND DIFFERENTIAL
DISPLACEMENTS—EXPERIMENTAL CONSIDERATIONS

A comparison of the VEXSY and SERPENT sequences n
essarily involves discussing their applicability to real syste
and the interpretation of the results. It was shown that VEX
compares spin displacements during two identical time in
vals1 with each other which are separated by a mixing tim
τm. It is frequently assumed that the measurement during1

will provide a “snapshot” of the velocity field and that1 is
chosen sufficiently short to prevent mixing of spin velocitie
VEXSY thus stresses the aspect ofdifferential displacements,
which correspond to velocities, hence the original term “vel
ity exchange spectroscopy.” This fact is illustrated in Fig. 2a

a typical application of multigradient PFG experiments, lamin
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FIG. 2. Visualization of fluid flow through a model porous medium, sy
bolized by a packing of monodisperse spherical beads. The arrows repr
displacements of a single molecule. (a) The particle’s motion is split into a
ries of displacements, symbolized by arrows the starting point of which coinc
with the end point of the previous arrow. Each arrow represents displacem
during identical intervals,1. The components of these vectors parallel to
direction of net mass transport,Z, are indicated at the axis on the left-han
side of the figure. In VEXSY, the displacement during the first interval (Z1, the
projection of the first arrow) is measured along with the displacement du
some later interval (Z2, the projection of any other arrow) after a mixing tim
τm. (b) Same as in (a), but with each arrow now representing the total disp
ment from the particle’s starting point for increasing times. In SERPENT,
displacement during the first interval11 (Z1, the projection of the first arrow) is
measured along with the total displacement during some longer interval12 (Z2,
the projection of any other arrow) where each interval begins at the same

flow around spherical particles. The motion of fluid particles
shown symbolically by a train of straight arrows; the project
of these displacement arrows onto one axis is measured b
choice of the direction of the pulsed field gradient. By treat
τm as a variable and increasing it stepwise between experim
starting withτm = 0, one successively correlates the first a
the second arrow; the first and the third arrow; the first and
fourth arrow, and so forth. An average over fast and slow sp
is taken and the correlation is found to decrease as the fina
placement becomes more and more independent from the i
displacement.

In SERPENT, on the other hand, one compares spin

arplacements during an initial encoding time interval,11, with
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those during a much longer time interval12 incorporating11.
One therefore stresses the aspect ofintegraldisplacements as i
shown in Fig. 2b. By stepwise increasing12, which now takes
the place ofτm, each spin adds a further distance to the one
tially traveled during11. From the fact that—for the presente
abstract model in the absence of backflow—displacements
steadily increasing it can be understood easily that correlat
between integral quantities (as derived from SERPENT exp
ments) decay much slower (19) than those between differentia
ones (as obtained from VEXSY).

The above-mentioned possibility of constructing a plot
S(Z1, Z′2 − Z1) from the SERPENT data does not necess
ily provide better insight into the flow properties as in this ca
displacements in two successive time intervals are compar
each other, in particular when the second is much longer tha
first one. Such a case is identical to an “asymmetric” VEX
experiment withτm = 0 and different encoding intervals, a s
uation where velocities averaged over different times are to
compared to each other, which would normally not find suita
applications.

From the experimental point of view, SERPENT is to be p
ferred when the evolution of displacement probabilities o
time and their dependence on a starting distribution are o
terest. The possibility of setting the condition12 = 11 (i.e.,
the second and third gradient pulses superposed) then pro
a well-defined reference point of perfect correlation betw
displacementsZ1 and Z′2. VEXSY, on the other hand, is th
method of choice when velocities are to be compared with e
other and the “history” of displacements during the mixing tim
τm is not directly measured. Note that even forτm = 0, ve-
locities are allowed to change during an interval1 and that in
general, a perfect correlation between the measured quan
Z1 andZ2 cannot be achieved. The proper choice of the ini
encoding interval might be crucial for the interpretation of bo
experiments in the case of flow investigations. One can o
discuss a “snapshot” of the velocity field if the encoding tim
is short compared to the timescale of velocity change. On
other hand, a too short encoding time leads to a reduced cor
tion between the measured displacement vectors if small-s
random motions such as self-diffusion are similar in magnit
to the displacement contributions from coherent motion.

CONCLUSIONS

We have compared two different multidimensional puls

field gradient sequences which have the purpose of correla
F VELOCITY EXCHANGE 167
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spin displacements in different time intervals with each oth
The simplest possible sequence, three-pulse SERPENT, c
lates initial displacements with integral displacements by enc
ing two interleaved time intervals beginning with the first gra
ent pulse. It is suggested for diffusion or flow problems wh
the dependence of the long-time, integral displacement st
tics on the initial conditions is of primary interest. VEXSY, o
the other hand, correlates two differential quantities, i.e., ini
and final displacements. The experiment consists of four pu
stepped in two pairs separated by a mixing time, where no in
mation about displacements during this mixing time is retain
VEXSY is frequently applied when instantaneous velocities a
their change with time are to be investigated. Both sequences
be described by equivalent formalisms which allow the repres
tation of the evolution of displacements by means of conditio
probabilities.

REFERENCES

1. P. T. Callaghan and B. Manz,J. Magn. Reson. A106,260 (1994).

2. J. Jeener, B. H. Meier, P. Bachmann, and R. R. Ernst,J. Chem. Phys.71,
4546 (1979).

3. R. R. Ernst, G. Bodenhausen, and A. Wokaun, “Principles of Nuc
Magnetic Resonance in One and Two Dimensions,” Clarendon, Ox
(1987).

4. K. Schmidt-Rohr and H. W. Spiess, “Multidimensional Solid-State NM
and Polymers,” Academic Press, London (1994).

5. E. O. Stejskal and J. E. Tanner,J. Chem. Phys.42,288 (1965).

6. P. T. Callaghan, “Principles of Nuclear Magnetic Resonance Microsco
Clarendon, Oxford (1991).
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