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Two different multidimensional pulsed field gradient sequences  of field gradient pulses independently define a valug.dthey
are compared which have the purpose of correlating spin displace-  are usually applied in the same spatial direction so that a spi
ments in different time intervals with each other. The simplest pos- isochromat Corresponding to a set of molecules trave"ng at cor
sible sequence, three-pulse SERPENT, measures displacements in  gtant velocity will have identicd®; andR; displacements, thus
gwo |nterleave_d time |ntgrvals, while in VEXSY, con5|_st_|ng qftwo in- contributing to points on the diagonal iR{, R,) space. By con-
ependent pairs of gradient pulses separated by a mixing time, dis- 4 2 igration of spins from one region of the displacemen
placements during the two encoding intervals are compared to each . . -
other. The formalism for both sequences is discussed in ¢ space and spect_rum_ to anothe_r over the ting will lead to of'f-_d_lagonal
in displacement space and common features as well as differences CONtributions. In this manner the molecular velocities may be
between the two types of experiments are highlighted, employing ~ Correlated. Application of VEXSY, mainly to fluid flow and
the particular case of the concurrent VEXSY scheme which allows ~ particle motion problems, has seen an increasing literature i
treatment according to both formalisms.  © 2001 Academic Press recent years and the interpretation of such correlations has be
Key Words: PFG; displacements; correlations; 2D; flow. discussed by means of coordinate transformatidr®)(and
suitable 1D-experimentd0-15.
In 1999 an apparently different pulsed gradient spin-echo ex
INTRODUCTION periment was proposed by Stagf al. (16), in which an ar-
bitrary number of sequential gradient pulses is applied to th
In 1993 Callaghan and Manz proposed a new type of pulsggin ensemble, each with an arbitrary amplitude, but with the
gradient spin-echo experiment in which two independent paigquirement that the time integral of the gradient waveform:s
of gradient pulses were used to encode for nuclear spin diser the whole experiment be zero, which is the condition re
placement over two separated, but well-defined, time intervajired for echo formation. (Note that the additional influence
(). This two-dimensional NMR spectroscopy method, knowsf background gradients will be neglected throughout this pa
as VEXSY (Velocity EXchange SpectroscopY), was in the forrper.) The encoding of position, starting with the first gradient
of a classical NMR exchange experiment, which is used to figgise, is thus followed by a repeated labeling of the particle:
correlations between features in the frequency spectrum by tiehe times of each successive gradient pulse so that the stat
identification of cross-signals in a two-dimensional density refics of motion become encoded into the echo signal acquire
resentationS( f1, f2) (2-4). In VEXSY, the displacements (or after completion of the sequence. In its simplest realization, i.e
velocities) for each molecule in the macroscopic ensemble a@fgee successive gradient pulses, the echo constraint determir
compared at two different times. The domains equivalerfyto that two gradient pulses may be independently varied, thus irr
andf; in classical spectroscopy correspond to the displacemepiging a two-dimensional encoding space. This experiment wa
R1andR; over twoidentical encoding intervals, which are themermed SERPENT for SEquential Rephasing by Pulsed field gra
selves separated by a further time delay, the equivalent of dients EncodingN Time intervals 16, 17). Both VEXSY and
the “mixing” time in the conventional exchange experiment. TRRERPENT belong to a family of PFG sequences which employ
conjugate “preparation” and “detection” domains correspond fultiple encoding of spin position but retain only displacement
the g space of the pulsed gradient spin-echo (PGSE) methpgormation due to the fact that the echo condition is fulfilled at
(5, 6). The PGSE gradient pulse pairs are stepped so as to phaise-end of the sequence. Both experiments apparently meast
encode the spins for molecular translational motion. Both pajeint probabilities for displacemeni, andR. over two differ-
enttime intervals. We shall show here that in fact the three-puls
1To whom correspondence should be addressed at LehrstutMdkro- SERPENT a”‘?' the VE?(SY_ eXpenm_entS qontam preC|§er the
molekulare Chemie, ITMC, RWTH Aachen, Worringerweg 1, D-52074 Aachef@Me information, albeit with ostensibly different coordinates.
Germany. Fax: +49-241-8888-185. E-mail: sstapf@mc.rwth-aachen.de.  The interpretation of this information, however, depends on the
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FIG.1. (a) Spin-echo pulse sequence to encode displacements during two identical time inte(VEXSY). Both gradient pairs of wave vectdts = —k»
andks = —k4 are stepped independently of each other. The mixing tisne measured between the second and the third gradient pulse. (b) Spin-echo pt
sequence to encode displacements during two overlapping time intexyaledA, (SERPENT). The gradients of wave vectkgsandk; are stepped independently
of each other anll; is computed subject to the condition that the sum of the effective gradients is zero. (c) VEXSY spin-echo pulse sequence according to (
vanishing mixing time. The second and third gradient pulses can be concatenated into a single pulse. Below each sequence with RF pulses isestimen the
gradient equivalent where each 28RF pulse is replaced by an inversion of the sign of the gradient wave vector.

choice of encoding times, as well as the wave vectors with rether. We conclude by commenting on the applicability of botf
spect to which Fourier transformation is performed, and allowsethods depending on the main interest of the experiment
focusing on either an integral or a differential aspect of fluigroblem.
motion.
The respective pulse sequences for VEXSY and SERPENT THE PROPAGATOR FORMALISM
are compared in Figs. 1a and 1b. Figure 1c presents a concate-
nated version of VEXSY which we shall show is essentially The propagator analysis for each pulse sequence is illustrat
equivalent to SERPENT. In each figure we show first a spimdth the help of Fig. 1 as follows: In the VEXSY experiment
echo version using RF pulses, and then, below, the effectifféig. 1a), the four gradient pulses with wave vectars,, ks, k4
gradient equivalent (in which 18@RF pulses have the effect ofare applied in pairs, each of which meets the echo condition; tht
inverting the sign of the prior gradient pulses). For convenien&e + k, = 0 andks + k4 = 0. The effective gradient pulses along
we employ the usual definitidh = (27)~* g6 wheregs is the with their time separations are then given bykg)-A—(k1)—
area under the gradient pulse. tm—(—k3z)—A—(k3). For an oppositely directed pair of puls&s,
We first analyze the respective pulse sequences using theassd —k;, g = (ki — (—k;))/2 or, in other words); =k;. The
tablished language of propagators, making clear which prokgirs (—k1)-A—(k1) and ks3)-A—(k3) define scattering wave
bility densities each method is able to measure. By examplewafctorsy; andqs, respectively. We now formulate the expression
a special case which can be described by either terminoloy;, the echo attenuation in terms of the wave vectiorsnd the
we compare the salient features of both sequences with e@oisition vectorst. From
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. tionsto each other. Note that in Eq. [4] one integrates not only
k. ka. ks, k) = /f_// p(r)expEizrkar)P(re[ 12, 8) - gyt the starting position; but also over the displacemeRp
accumulated during,, between the encoding gradient pairs, so
that information abouR; is effectively averaged out.
x expi2rksr3)P(rz | ra, A) Normally the gradient pulses are applied along a single di
rection (thez axis) and the data collected in two dimensions,
(a1, g3). Then, inverse Fourier transformation with respect to
(a1, gs) returns the two-dimensional Fourier spectrum

x exp(i2rkara)P(ra | rs3, tm)

x exp—i2mksrg)dridrodrzdry [1]

we then obtain the echo amplitude

E(kq, ks) = //// p(ri) exp=i2zkar)P(ra | ra, A)

x P(r3 | ra, A)exp(2rksrg)dridrodradry, [2]

wherep(rq) is the initial spin density distributiom,, is the nu-
clear spin position at the time of tmth gradient pulse, and the
P(rn|rm, t) are conditional probabilities for a particle initially
atr, to move tor, over timet. The underlying assumption is
that the duration of the gradient pulskis short § « A), and
that motions during can be neglected.

The equation above is expressed in a four-dimensional co
ordinate systemy(, r», rs, r4) which denotes positions at th
timesty, ty, t3, t4 when the gradient pulses are applied. Rewri
ing the equation in terms of a new set of independent variab@%'
defined by

ri, Ri=ra—riy, Ro=rz—ry Rz=rs—rs [3]

where theR vectors represent successive displacements, we de-
fine for equal magnitudes of the gradient pulses in the first pulse

pair (1) as well as in the second pulse paijg) Rewriting in terms of a new set of independent variables define

S(Z1. Z3) = P(Z1, AYPy(Z1, A | Z3, A; ).

S(Z1, Z3) = P(Z1, A) 8(Z1 — Za).

SERPENT (FIG. 1b)

plitude is given by

Eky, ko, ks) = / / /p(rl) exp(i 2tk )P (11 | 12, A1)

X eXp(i2mKarp)P(ra|ra, Az — Ag)
x exp2rksrz)dridradrs.

by displacementR; andR’, from the initial positiorr

e@.a) = [[[[ peoPesin+Re 2)PEL+ Rl

+R1+R2, tm)P(r1 +R1 +R2 |11+ R1 +R>

ri, Ri=ra—r1y, R, =rz—ry,

one obtains

+ R3, A)dridR; expli 27 (q1R1 + q3R3)}

[5]

In the special case of a velocity distribution where spins are
x exp(2rkyra)P(r2 | rs, tm) expEi2rkars) not allowed to change their individual velocity, such as laminai
flow in the absence of self-diffusio®y(Z1, A | Z3, A; tm)

is the Dirac delta functioA(Z; — Z3) and the two-dimensional
spectrum is diagonal,

[6]

In analogy to the notation of Stapt al. (16), the effective
egradient pulses along with their time separations aie J—A;—
{_—kz)—(Ag — A1)—(ks), where—k; — ko + k3 = 0. The echo

[7]

[8]

x dR1dR3 E(k2, k3) = ///P(H)P(fl [r1+ Ry, A))P(ri+Ry |1

— //F_’(Rl, A)Pv(Ry, ARz, A; tm)
x exp{i 2 (q1R1 4 03R3)} dR1 dR3 [4]

+ RS, Ao — A]_) drq epr 27Tk2R1)
x exp(27ksR5) dR1 dR),

where 5(R1, A) is the average propagator which describes tl@nd

probability that a particle displaces B over timeA indepen-
dent of the starting positio®( 18 while Py (R1, A|Rs, A; )

is the conditional probability that, if a displacementRy oc-
curs during the first interval\, then a displacemeriRs will
occur during the third time interval of equal duration to the

E(g2, 03) := // P(R1, A1)Ps(R1, A1 | R), Ay)
x expli 2 (92R1 + q3R3)} dR1 dRy,

[9]

first, delayed by a mixing time;,. This particular nomenclature where for convenience we defirp =k,, g3=Kks. Ps(Ry,

has been chosen to emphasize fAadescribes the conditional A; | R, A,) now describes the conditional probability that, if

probability betweerdisplacement the VEXSY case, hence a displacement bfR; occurs during the first intervak,, then
the subscrip¥, as compared t®(r,|rm, t) which relateposi- a displacemen®’, will occur during the total time intervah,



TWO-DIMENSIONAL NMR OF VELOCITY EXCHANGE 165

which incorporates\;. Note that this representation is differ- ] — )
ent from the function introduced for the VEXSY experiment, E(Q. 02) = // P(R1. A)Pv(R1. ARz, A70)
Pv(R1, A | Rs, A; 1), but is a consequence of the way the P2
. . R R Ri:dR

SERPENT experiment and the subsequent Fourier transforma- X eXpli2m (GaRy + dzR2)} ARy AR,
tion are performed as will be shown in the under Comparisor}1

L whereq; = ki, 92 = ks.
later in this paper.

Adain. the aradient oulses are frequently applied alon as'n-For gradient pulses which are applied along a single direc
gain, the g D q Y app 19 a s, (thez axig and with the data collected in two dimensions,
gle direction (thez axig and the data collected in two dimen-

. o . . . (01, g2), inverse Fourier transformation with respect dg, @)

sions, G C.‘3)’ a_\lthough It |s_ent|rely pos:_mble for them tp be '.nﬁaturns the two-dimensional Fourier spectrum

different directions. Then, inverse Fourier transformation wit

respect tody, gz) returns the two-dimensional Fourier spectrum =
p 2. %3) P S(Z1, Zo) = P(Z1, AYPu(Z1, A| Zo, A;0).  [14]

(21, Z5) = P(Z1, A1) Ps(Z1, A1 [ 25, Ag). - [10] Alternatively, one can assume the SERPENT terminology an

S(Z1, Zp) is precisely the joint probabilitW(Zy, A1, Zj, A2) [)evx(/jrllte I|n terms ;f a ng\év/ sfet of wdgpgnldent_\(arlables define
discussed by Stagft al. (16). Note that SERPENT produces a) °'>F acement®, andR; from the nitial positiorr,
spectrum in which the displacemeng,, Z,, are plotted over ,
two time intervals different from those of the VEXSY experi- L
ment. The second of these displacements incorporates the first.

Thusinthe eventof a velocity distribution as discussed in Eq. [éT, Which case one obtains

Ri=ra—ry, R, =rz—ry, [15]

SERPENT will not return a diagonal two-dimensional spectrum /
but one which is inclined to the longer interval axis. E(ky, ko) = ///P(H)P(fl IT1+ Ry, A)P(ri+Ry|r1
CONCURRENT VEXSY (FIG. 1c) + Ry, Az — Ar)driexp(2rkiRy)
x exp27k;R5) dR; dR) [16]

We now consider the VEXSY sequence in which the mix-
ing time is set to zero, as shown in Fig. 1c. Now the effectiveg () = // P(Ry. A)Ps(Ry. Ap | Ry, Ag)
gradient pulses along with their time separations afle J—A—
(k1) (—k2)-A—(k2). The adjacent paikg)(—k2) can be concate- x expli 27 (q,R1 + g2R5)} dR1 dR),
nated to a single puld€ wherek; = ki — k». This gives us the
equivalent of the three—pu|se SERPENT experiment in Whi%ereqi = k. ,02 = k2_ Inverse Fourier transformation with

the SERPENT triadky, ko, ka) is now (—ki, ki, k2) and, as respect togj, g») now returns the two-dimensional Fourier spec-
required, sums to zero. trum

The normalized echo amplitude is given by
S(Z1, Z5) = P(Z1, A1)Ps(Z1, A1 | Z5, Ap). [17]

E(kq, k), k :/// ri) exp(i2zkqr1)P(ri|ro, A
(kK. ko) plra) expt r)Pra iz &) In this special case, Egs. [14] and [17] are two complementar

x exp(2rkira)P(rz2 | ra, A)exp(2rkors)  representations of the same physical situation with= A and
x dry dro drs. [11] Ay = 2A, whereZ, = Z; + Z.
One can now rewrite Eq. [11] following the VEXSY termi- COMPARISON OF VEXSY AND SERPENT
nology, in terms of a new set of independent variables defined

by successive displacemesandR, from the initial position As has been described in the above paragraph, the tw
ysu Ve disp £ 2 initial posit dimensional probability density of displacements, which is ob:

r tained from 2D-Fourier transformation of thespace data, can
. Rimfs—r1 Rp=rs—rs [12] pe Written as the produgt. of the average propqgator i.n the fir:
’ ’ ’ time interval and a conditional probability function which pos-
: sesses a different interpretation for each of the experiments di
and obtains

to the nature of howg space is sampled (see Egs. [5] and [10]).
VEXSY is characterized by two truly independent wave vector:
E(ka, ko) = ///,O(rl)P(fl IT14+ R, A)P(ri1+Ry|rs q:1 andgs, and Fourier transformation with respecitpandqs
leads to a plot of the two displacements which are defined b
+R1+ Rz, A)driexp(2rkiRy) these wave vectors, name®; andRs. From Eq. [5] it can be
x exp(2rk;R,) dR; dRy, [13] seen that the conditional probabili®, (Z1, A | Z3, A; ),
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itself being a two-dimensional function, is obtained from di- (a)
viding the 2D-probability density5(Z;, Z3) by the propagator | /

P(Z1, A), l /
Pu(Zs A | Za, & ) = S(Z1. Z9)/P(Z1, A), (18] l
tselt is available v ! '
where the propagator itself is available via f —
P2 8) = [ S(21. 22)dZ [29]
Z /2,

Examples for the interpretation @ (Z1, A | Z3, A; thm)

have been presented ih9). In SERPENT, Fourier transforma-

tion is performed with respect tip andqgs which render the cor-

responding displacements from the beginning of the sequence (b) |
up to the application of the second and the third gradient pulse,
respectively. The division can again be applied (see Eq. [10]),
but the conditional probabilitfPs(R1, A1 | RS, Ap) now relates
displacements in interleaved time interval§)(
Itis quite obvious that under the conditions shown in Fig. 1c,
both treatments should lead to equivalent results, the only differ- Y
ence being that VEXSY is performed by independent variation Q

of the first and third gradient pulses, SERPENT by variation
of the second and third gradient pulses. The formal equiva- z 12z,

lence of Egs. [14] and [17] can be proved by reordering the

SERPENT data ig) space—as the conditidq + ko, + ks =0

from the general case must be met, each pointiings) space

can be transformed into a point igy( gz) space—and subse- FIG. 2. Visualization of fluid flow through a model porous medium, sym-
quent Fourier transformation with respect to the new variabl$!ized by a packing of monodisperse spherical beads. The arrows represe
The equivalent operation in displacement space is to Compﬂ&placements of a single molecule. (a) The particle’s motion is split into a se

_ , L , ries of displacements, symbolized by arrows the starting point of which coincide
(21, Z5) = (21, Z; — Z4) from each pointinZy, Z5) space. i the end point of the previous arrow. Each arrow represents displacemen

Then Eq. [17] transforms into during identical intervalsA. The components of these vectors parallel to the
direction of net mass transpoiZ, are indicated at the axis on the left-hand
S(Zl, Zz) — |5(Zl, Al)PV(ZL Aq| 2/2 — 71, Ay — Ag; 0) side of the figure. In VEXSY, the displacement during the first interéal the
- projection of the first arrow) is measured along with the displacement during
P(Zl’ Al)PV(Zl, A1 Zy, Ay — Agq; 0), [20] some later interval4,, the projection of any other arrow) after a mixing time
m. (b) Same as in (a), but with each arrow now representing the total displace
ment from the particle’s starting point for increasing times. In SERPENT, the
displacement during the first interval (Z, the projection of the first arrow) is
measured along with the total displacement during some longer intes\@s,
the projection of any other arrow) where each interval begins at the same time

which is identical to Eq. [14] becauge; = A andA, = 2A.

INTERPRETATION OF INTEGRAL AND DIFFERENTIAL

DISPLACEMENTS—EXPERIMENTAL CONSIDERATIONS
flow around spherical particles. The motion of fluid particles is

A comparison of the VEXSY and SERPENT sequences neshiown symbolically by a train of straight arrows; the projection
essarily involves discussing their applicability to real systentd these displacement arrows onto one axis is measured by tl
and the interpretation of the results. It was shown that VEXSdhoice of the direction of the pulsed field gradient. By treating
compares spin displacements during two identical time intefy as a variable and increasing it stepwise between experiment
vals A with each other which are separated by a mixing timg&arting withz,, = 0, one successively correlates the first and
m. It is frequently assumed that the measurement dusing the second arrow; the first and the third arrow; the first and th
will provide a “snapshot” of the velocity field and that is fourth arrow, and so forth. An average over fast and slow spin
chosen sufficiently short to prevent mixing of spin velocitiess taken and the correlation is found to decrease as the final di
VEXSY thus stresses the aspectdifferential displacements, placement becomes more and more independent from the initi
which correspond to velocities, hence the original term “velodisplacement.
ity exchange spectroscopy.” This fact is illustrated in Fig. 2a for In SERPENT, on the other hand, one compares spin dis
a typical application of multigradient PFG experiments, lamingdacements during an initial encoding time interval, with
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those during a much longer time intenva} incorporatingA;.  spin displacements in different time intervals with each other
One therefore stresses the aspednbtagral displacements as is The simplest possible sequence, three-pulse SERPENT, cor
shown in Fig. 2b. By stepwise increasing, which now takes lates initial displacements with integral displacements by encoc
the place ofr,, each spin adds a further distance to the one iriig two interleaved time intervals beginning with the first gradi-
tially traveled duringA 1. From the fact that—for the presentecent pulse. It is suggested for diffusion or flow problems where
abstract model in the absence of backflow—displacements #re dependence of the long-time, integral displacement stati
steadily increasing it can be understood easily that correlatidits on the initial conditions is of primary interest. VEXSY, on
between integral quantities (as derived from SERPENT expdifie other hand, correlates two differential quantities, i.e., initia
ments) decay much slowetq) than those between differentialand final displacements. The experiment consists of four pulse
ones (as obtained from VEXSY). stepped in two pairs separated by a mixing time, where no infol
The above-mentioned possibility of constructing a plot ahation about displacements during this mixing time is retainec
21, Z;, — Z,;) from the SERPENT data does not necessaW¥EXSY is frequently applied when instantaneous velocities an
ily provide better insight into the flow properties as in this cas#heir change with time are to be investigated. Both sequences c
displacements in two successive time intervals are compared#described by equivalent formalisms which allow the represer
each other, in particular when the second is much longer than thgon of the evolution of displacements by means of conditione
first one. Such a case is identical to an “asymmetric” VEXS)robabilities.
experiment withry, = 0 and different encoding intervals, a sit-
uation where velocities averaged over different times are to be
compared to each other, which would normally not find suitable

applications. . . . . 1. P. T. Callaghan and B. Man, Magn. Reson. A06,260 (1994).
From the experimental point of view, SERPENT is to be pre-
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locities are allowed to change during an intergabnd that in )
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Zy andZ, cannot be achieved. The proper choice of the initial, ¢ 1. s stapt, and B. @iiich,J. Magn. Resori46,169 (2000).
encodmg mte.rval might be cruual_for thg mt_erpretatlon of both, r p Mitra,Phys. Rev. B51,15074 (1995),
experlments in the case of flow |_nve_st|ga_1t|ons. One _Can Or!LI}/ D. G. Cory, A. N. Garroway, and J. B. MilleRolym. Preprints31, 149
discuss a “snapshot” of the velocity field if the encoding time (1990).
is short compared to the timescale of velocity change. On the v. cheng and D. G. Cong. Am. Chem. Sod21,7935 (1999).
qther hand, atoo short encodipg time leadsto a red_uced corrglp, T, callaghan, S. L. Codd, and J. D. Seym@emcepts Magn. Resohl,
tion between the measured displacement vectors if small-scale181 (1999).
random motions such as self-diffusion are similar in magnitude. s. L. Codd, B. Manz, J. D. Seymour, and P. T. Callagi®itys. Rev. B0,

REFERENCES

to the displacement contributions from coherent motion. R3491 (1999).
15. A. Caprihan and J. D. Seymouk, Magn. ResoriL44,96 (2000).
CONCLUSIONS 16. S. Stapf, R. A. Damion, and K. J. Pack&rMagn. Resorll37,316 (1999).

17. S. Stapf and K. J. Packekppl. Magn. Resorl5,303 (1998).
We have compared two different multidimensional pulsetd. J. Karger and W. Heink]. Magn. Resorb1, 1 (1983).
field gradient sequences which have the purpose of correlatirtgs. Stapf and B. Blinich,Magn. Reson. Imaging, 385 (2001).



	INTRODUCTION
	FIG. 1.

	THE PROPAGATOR FORMALISM
	SERPENT (FIG. 1b)
	CONCURRENT VEXSY (FIG. 1c)
	COMPARISON OF VEXSY AND SERPENT
	INTERPRETATION OF INTEGRAL AND DIFFERENTIAL DISPLACEMENTS—EXPERIMENTAL CONSIDERATIONS
	FIG. 2.

	CONCLUSIONS
	REFERENCES

